Section 8.1: INTRODUCTION TO FUNCTIONS

When you are done with your homework you should be able to...

- π Find the domain and range of a relation
- π Determine whether a relation is a function
- π Evaluate a function

WARM-UP:

Evaluate $y = -x^2 - 22x + 5$ at x = -3.

DEFINITION OF A RELATION

Α	_ is any	of ordered pairs. The set o	of all
components of the		_ pairs is called the	of the
relation and the set of	f all second o	components is called the	of the

Example 1: Find the domain and range of the relation.

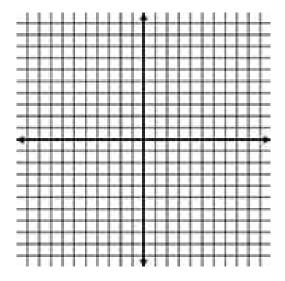
VEHICLE	NUMBER OF WHEELS
CAR	4
MOTORCYCLE	2
BOAT	0

DEFINITION OF A FUNCTION

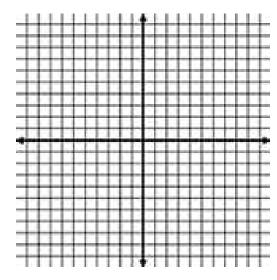
Α	is a	from a first	set, called the
	, to a second set, ca	alled the	, such that each
	in the	corresponds to	
element in the _			

Example 2: Determine whether each relation represents a function. Then identify the domain and range.

a.
$$\{(-6,1), (-1,1), (0,1), (1,1), (2,1)\}$$



b. $\{(3,3), (-2,0), (4,0), (-2,-5)\}$



FUNCTIONS AS EQUATIONS AND FUNCTION NOTATION

Functions are often given in terms of	rather than as
of	Consider the equation below, which
	eet, dropped from a height of 500 feet
$y = -16x^2 +$	500
The variable is a	of the variable For each value of x ,
there is one and only one value of	The variable x is called the
variable because it c	an be any value from
the The variable y	is called the variable
because its value on x	. When an
represents a, the f	unction is often named by a letter such as
$f,\ g,\ h,\ F,\ G,\ { m or}\ H$. Any letter can be	used to name a function. The domain is
the of the function's	and the range is the of the
function's If we nam	ne our function, the input is
represented by, and the output is	represented by The notation
is read " of" or " at	So we may rewrite $y = -16x^2 + 500$
as Now let's e	evaluate our function after 1 second:

Example 3: Find the indicated function values for $f(x) = (-x)^3 - x^2 - x + 10$.

- a. f(0)
- b. f(2)
- c. f(-2)
- d. f(1)+f(-1)

Example 4: Find the indicated function and domain values using the table below.

- a. h(-2)
- b. h(1)
- c. For what values of x is h(x)=1?

х	h(x)
-2	2
-1	1
0	0
1	1
2	2

Section 8.2: GRAPHS OF FUNCTIONS

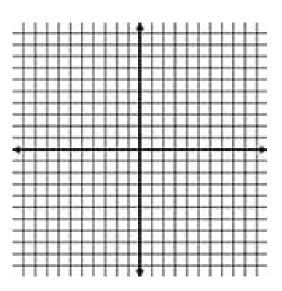
When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$. Use the vertical line test to identify functions
- π Obtain information about a function from its graph
- π Review interval notation
- π Identify the domain and range of a function from its graph

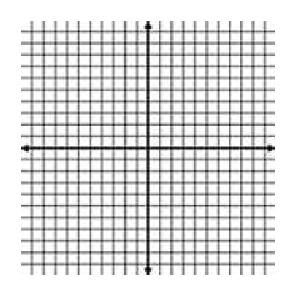
WARM-UP:

Graph the following equations by plotting points.

a.
$$y = x^2$$



b.
$$y = 3x - 1$$

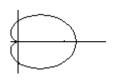


THE VERTICAL LINE TEST FOR FUNCTIONS

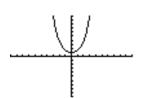
If any vertical line ______ a graph in more than _____ point, the graph _____ define ____ as a function of ____.

Example 1: Determine whether the graph is that of a function.

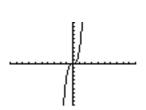
a.



b.



C.



OBTAINING INFORMATION FROM GRAPHS

You can obtain information about a function from its graph. At the right or left of a graph, you will often find ______ dots, _____ dots, or _____.

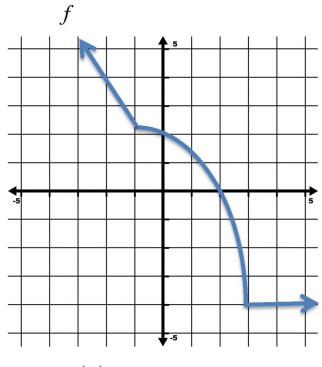
π A closed dot indicates that the graph does not ______ beyond this point and the _____ belongs to the _____ beyond this _____ point and the _____ belongs to the _____ beyond this _____ belong to the _____ beyond this _____ point and the _____ DOES NOT belong to the ______

 π An arrow indicates that the graph extends _____ in the direction in which the arrow _____

REVIEWING INTERVAL NOTATION

I NTERVAL NOTATION	SET-BUILDER NOTATION	GRAPH
(a,b)		$\leftarrow \rightarrow x$
[a,b]		←
[a,b)		←
(a,b]		←
(a,∞)		←
$[a,\infty)$		← x
$(-\infty,b)$		← x
$(-\infty,b]$		← <i>x</i>
$(-\infty,\infty)$		$\leftarrow \rightarrow x$

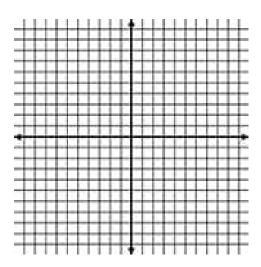
Example 2: Use the graph of f to determine each of the following.



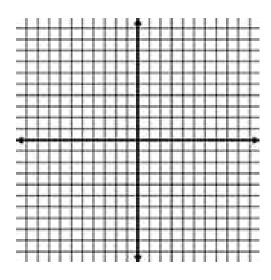
- a. f(0)
- b. f(-2)
- c. For what value of x is f(x)=3?
- d. The domain of $\,f\,$
- e. The range of \boldsymbol{f}

Example 3: Graph the following functions by plotting points and identify the domain and range.

a.
$$f(x) = -x - 2$$



b.
$$H(x) = x^2 + 1$$



Section 8.3: THE ALGEBRA OF FUNCTIONS

When you are done with your homework you should be able to...

- π Find the domain of a function
- π Use the algebra of functions to combine functions and determine domains

WARM-UP:

Find the following function values for $f(x) = \sqrt{x}$

- a. f(4)
- b. f(0)
- c. f(196)

FINDING A FUNCTION'S DOMAIN

If a function f does not model data or verbal conditions, its domain is the ______set of _____numbers for which the value of f(x) is a real number. ______ from a function's ______ real numbers that cause ______ by _____ and real numbers that result in a ______ root of a ______ number.

Example 1: Find the domain of each of the following functions.

a.
$$f(x) = \sqrt{x-1}$$

b.
$$g(x) = \frac{4-x}{1-x^2}$$

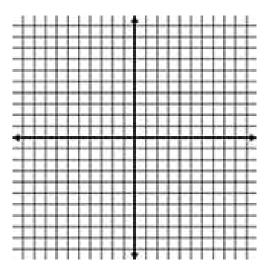
$$c. h(t) = 3t + 5$$

THE ALGEBRA OF FUNCTIONS

Consider the following two functions:

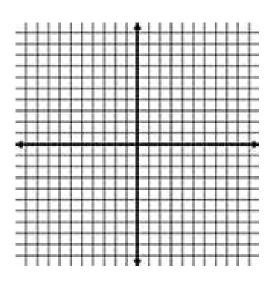
$$f(x) = -x$$
 and $g(x) = 3x - 5$

Let's graph these two functions on the same coordinate plane.



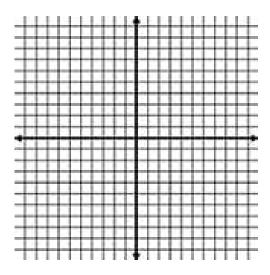
Now find and graph the sum of f and g.

$$(f+g)(x)=$$



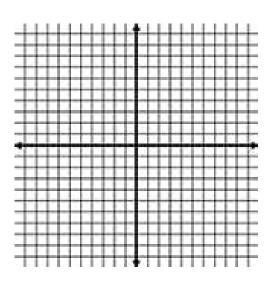
Now find and graph the difference of f and g.

$$(f-g)(x)=$$



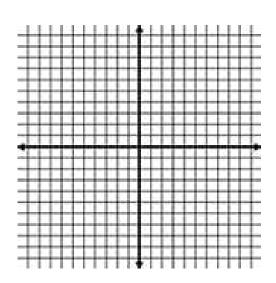
Now find and graph the product of f and g.

$$(fg)(x)=$$



Now find and graph the quotient of f and g.

$$\left(\frac{f}{g}\right)(x) =$$



THE ALGEBRA OF FUNCTIONS: SUM, DIFFERENCE, PRODUCT, AND QUOTIENT OF FUNCTIONS

Let f and g be two functions. The _____ f+g , the _____ f-g , the _____ f are _____ whose domains are the set of all real numbers _____ to the domains of f and g , defined as follows:

- 1. Sum: _____
- 2. Difference: ______
- 3. Product: _____
- 4. Quotient: _____, provided _____

Example 2: Let $f(x) = x^2 + 4x$ and g(x) = 2 - x. Find the following:

a.
$$(f+g)(x)$$

d.
$$(fg)(x)$$

b.
$$(f+g)(4)$$

e.
$$(fg)(3)$$

c.
$$f(-3) + g(-3)$$

f. The domain of
$$\left(\frac{f}{g}\right)(x)$$

Section 8.4: COMPOSITE AND INVERSE FUNCTIONS

When you are done with your homework you should be able to...

- π Form composite functions
- π Verify inverse functions
- π Find the inverse of a function
- π Use the horizontal line test to determine if a function has an inverse function
- π Use the graph of a one-to-one function to graph its inverse function

WARM-UP:

Find the domain and range of the function $\{(-1,0),(0,1),(1,2),(2,3)\}$:

THE COMPOSITION OF FUNCTIONS

The composition of the function defined by the equation	_ with is denot	ed by and is
The domain of thesuch that	function	is the set of all
1 is in the domain of a	ind	
2 is in the domain of	·	

Example 1: Given $f(x) = -x^2 + 8$ and g(x) = 6x - 1, find each of the following composite functions.

a.
$$(f \circ g)(x)$$

b.
$$(g \circ f)(x)$$

DEFINITION OF THE INVERSE OF A FUNCTION

Let f and g be tw	o functions such th	at		
	for every	_ in the domain of	·	
and				
	for every	_ in the domain of	··	
The function	_ is the	of the func	tion	and is denoted
by (read "	f -inverse"). Thus $_$		_ and	
The	of is equ	al to the	of_	and
vice versa.				

Example 2: Show that each function is the inverse of the other.

$$f(x) = 4x + 9$$
 and $g(x) = \frac{x-9}{4}$

FINDING THE INVERSE OF A FUNCTION

FINDING THE INVERSE OF A FUNCTION
The equation of the inverse of a function f can be found as follows:
1. Replace with in the equation for
2. Interchange and
3. Solve for If this equation does not define as a function of,
the function doe not have an function and this
procedure ends. If this equation does define as a function of, the
function has an inverse function.
4. If has an inverse function, replace in step 3 with We can
verify our result by showing that and

Example 3: Find an equation for $f^{-1}(x)$, the inverse function.

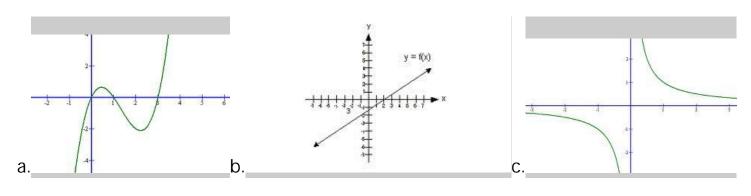
a.
$$f(x) = 4x$$

b.
$$f(x) = \frac{2x-3}{x+1}$$

THE HORIZONTAL LINE TEST FOR INVERSE FUNCTIONS

A function f has an inverse that is a function _____, if there is no _____ line that intersects the graph of the function ____ at more than _____ point.

Example 4: Which of the following graphs represent functions that have inverse functions?

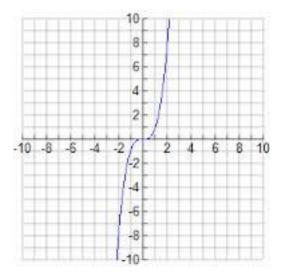


GRAPHS OF A FUNCTION AND ITS INVERSE FUNCTION

There is a _______ between the graph of a one-to-one function _____ and its inverse ______. Because inverse functions have ordered pairs with the coordinates _______, if the point ______ is on the graph of ______. The points ______ and _____ are _______ with respect to the line ______.

Therefore, the graph of ______ is a ______ of the graph of ______ about the line ______.

Example 5: Use the graph of f below to draw the graph of its inverse function.



Section 9.1: REVIEWING LINEAR INEQUALITIES AND USING INEQUALITIES IN BUSINESS APPLICATIONS

When you are done with your homework you should be able to...

- π Review how to solve linear inequalities
- π Use linear inequalities to solve problems involving revenue, cost, and profit

WARM-UP:

Solve.

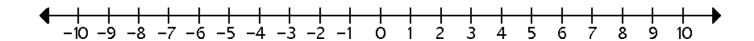
$$5-8(12-5x)=x$$

SOLVING A LINEAR INEQUALITY

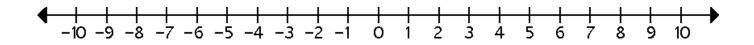
1. Simplify the expression on each side.
2. Use the property of inequality to collect all the
terms on one side and the terms
on the other side.
3. Use the property of inequality to
the variable and solve. Change the of the inequality when
multiplying or dividing both sides by a number.
4. Express the solution set in notation and graph the
solution set on a line.

Example 1: Solve and graph the solution on a number line.

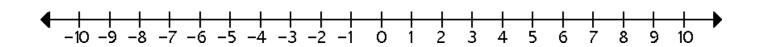
a.
$$2x + 5 < 17$$



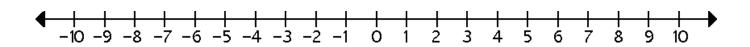
b.
$$-4(x+2) \ge 3x+20$$



c.
$$\frac{4x-3}{6} + 2 > \frac{2x-1}{12}$$



Example 2: Let $f(x) = \frac{2}{5}(10x - 15) + 9$ and let $g(x) = \frac{3}{8}(16 - 8x) - 7$. Find all values of x for which $g(x) \le f(x)$.



FUNCTIONS OF BUSINESS AND LINEAR INEQUALITIES

For any business, the ______ function, _____, is the money generated by selling ____ units of the product:

The _____ function, _____, is the ____ of producing ____ units of the product:

The term on the right, _____, represents _____ cost because it _____ based on the number of units _____.

REVENUE, COST, AND PROFIT FUNCTIONS

A company produces and sells units of a product.
REVENUE FUNCTION:
COST FUNCTION:
PROFIT FUNCTION:

APPLICATIONS

- 1. A company that manufactures bicycles has a fixed cost of \$100,000. It costs \$100 to produce each bicycle. The selling price is \$300 per bike. Let x represent the number of bicycles produced and sold.
 - a. Write the cost function, C.

b. Write the revenue function, R.

c. Write the profit function, P. d. More than how many units must be produced and sold for the business to make money? 2. You invested \$30,000 and started a business writing greeting cards. Supplies cost \$0.02 per card and you are selling each card for \$0.50. Let x represent the number of cards produced and sold. a. Write the cost function, C. b. Write the revenue function, R. c. Write the profit function, P. d. More than how many units must be produced and sold for the business to make money?

Section 9.2: COMPOUND I NEQUALITIES

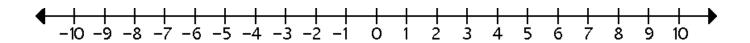
When you are done with your homework you should be able to...

- π Find the intersection of two sets
- π Solve compound inequalities involving and
- π Find the union of two sets
- π Solve compound inequalities involving or

WARM-UP:

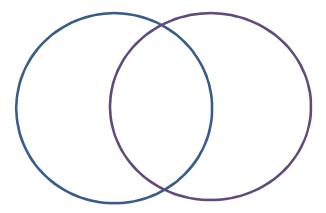
Solve and graph the solutions of the inequality.

$$-6x + 7 > -(x-12)$$



Consider the following situation:

Shannon has 2 dogs and 2 cats. Jill has 1 dog and no cats. Nicole has 1 dog and 2 cats. Let C represents the set of these people who have cats. Let D represent the set of these people who have dogs.



CONFOUND INEQUALITED INVOLVING AND	COMPOUND	INEQUALITIE	ES INVOLVING	AND
------------------------------------	----------	-------------	--------------	-----

If _____ and ____ are sets, we can form a new set consisting of all ______ A and B. This is called the of the two sets.

DEFINITION OF THE INTERSECTION OF SETS

The _____ of sets ____ and ____, written _____, is the set of elements _____ to ____ set ____ and set _____. This definition can be expressed in set-builder notation as follows:

Example 1: Find the intersection of the sets.

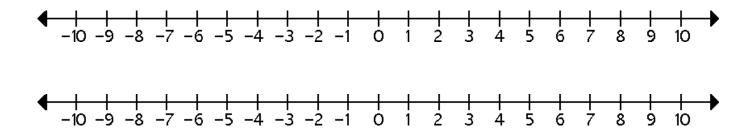
- a. $\{1,3,7\} \cap \{2,3,8\}$ b. $\{1,2,3,4,5\} \cap \{2,4,6\}$ c. $\{-4,-3,-1\} \cap \{-2,3,4\}$

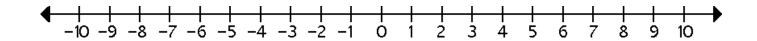
SOLVING COMPOUND INEQUALITIES INVOLVING AND

- 1. Solve each inequality ______.
- 2. Graph the solution set to ______ inequality on a number line and take the _____ of these solution sets. This is where the sets

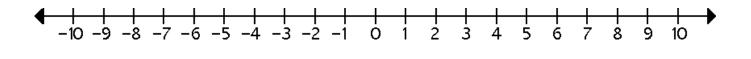
Example 2: Solve each compound inequality. Use graphs to show the solution set to each of the two given inequalities, as well as a third graph that shows the solution set of the compound inequality. Except for the empty set, express the solution set in interval notation.

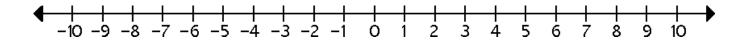
a. x > 1 and x > 4

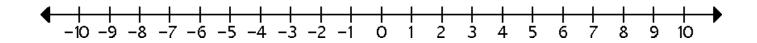




b. x < 6 and x > -2





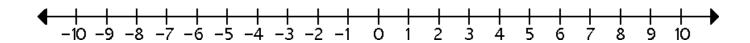


If _____ and ____ can

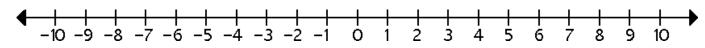
be written in the shorter form ______.

Example 3: Solve and graph the solution set:

a.
$$7 < x + 5 < 11$$



b.
$$3 \le 4x - 3 < 19$$



COMPOUND INEQUALITIES INVOLVING OR

If and are s	·		J	
	that are in	_ or in	or in	
A and B. This is called the		(of the two sets.	
DEFINITION OF THE UNION OF SETS				
The	of sets _	and	, written	
is the set of elements that	are		_ of set	or of set
or of	sets. This de	finition car	n be expressed ir	n set-builder
notation as follows:				

Example 4: Find the union of the sets.

a.
$$\{1,3,7\} \cup \{2,3,8\}$$
 b. $\{a,b,c\} \cup \{z\}$

b.
$$\{a,b,c\} \cup \{z\}$$

c.
$$\{-4, -3, -1\} \cup \{-2, 3, 4\}$$

SOLVING COMPOUND INEQUALITIES INVOLVING OR

1. Solve each inequality ______.

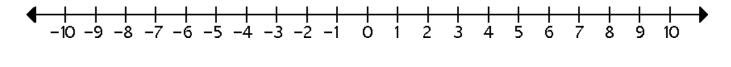
2. Graph the solution set to ______ inequality on a number line and take

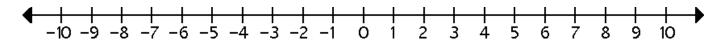
the _____ of these solution sets. This union appears as

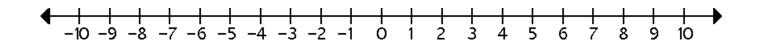
the portion of the number line representing the _____ collection of numbers in the two graphs.

Example 5: Solve each compound inequality. Use graphs to show the solution set to each of the two given inequalities, as well as a third graph that shows the solution set of the compound inequality. Except for the empty set, express the solution set in interval notation.

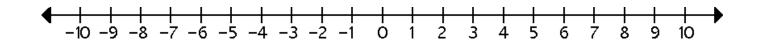
a. x > 0 or $x \ge 4$

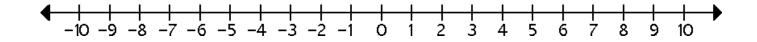


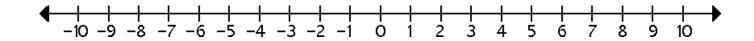




b.
$$x < -3 \text{ or } x > 5$$





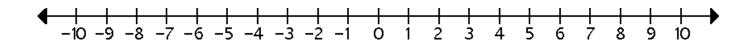


If _____ and ____ can

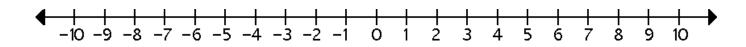
be written in the shorter form ______.

Example 6: Solve and graph the solution set:

a.
$$x-2(x+5)<12 \cup 5x+6>-1$$



b.
$$4x-15 > -10 \text{ or } \frac{x}{4} - 1 \le \frac{3}{4}$$



Section 9.3: EQUATIONS AND INEQUALITIES INVOLVING ABSOLUTE VALUE

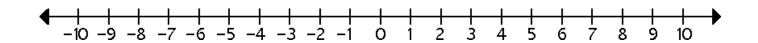
When you are done with your homework you should be able to...

- π Solve absolute value equations
- π Solve absolute value inequalities in the form |u| < c
- π Solve absolute value inequalities in the form |u| > c
- $\boldsymbol{\pi}$ Recognize absolute value inequalities with no solution or all real numbers as solutions
- π Solve problems using absolute value inequalities

WARM-UP:

Graph the solutions of the inequality.

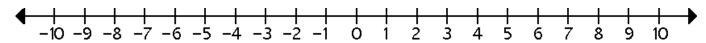
a.
$$-6 < x < 6$$



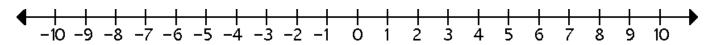
REWRITING AN ABSOLUTE VALUE EQUATION WITHOUT ABSOLUTE VALUE BARS

If _____ is a positive real number and _____ represents any _____ expression, then _____ is equivalent to _____ or ____.

Consider |x| = 6.



Now consider |x-3|=6.



Example 1: Solve.

a.
$$|5x+7|=12$$

b.
$$7|-x+11|=21$$

c.
$$|x-4|-8=9$$

d.
$$|x| + 5 = 4$$

REWRITING AN ABSOLUTE VALUE EQUATION WITH TWO ABSOLUTE VALUES WITHOUT ABSOLUTE VALUE BARS

If _____, then _____ or ____.

Example 2: Solve.

$$|2x-7| = |x-12|$$

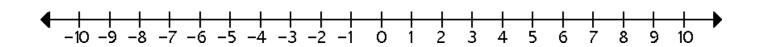
SOLVING ABSOLUTE VALUE INEQUALITIES OF THE FORM |u| < c

If _____ is a positive real number and _____ represents any ______ expression, then

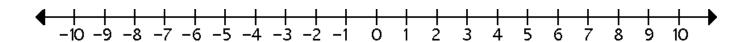
This rule is valid if ______ is replaced by _____.

Example 3: Solve and graph the solution set on a number line:

a.
$$|x| < 6$$



b.
$$-3|2x+7|+8 \ge -1$$



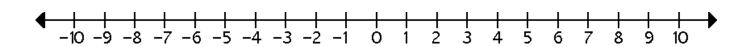
SOLVING ABSOLUTE VALUE INEQUALITIES OF THE FORM |u| > c

If _____ is a positive real number and _____ represents any ______
expression, then

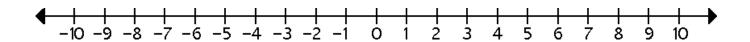
This rule is valid if _____ is replaced by _____.

Example 4: Solve and graph the solution set on a number line:

a.
$$|x| > 6$$



b. $5|12x-1|-10 \ge 2$



ABSOLUTE VALUE INEQUALITIES WITH UNUSUAL SOLUTION SETS

If _____ is an algebraic expression and _____ is a _____ number,

- i. The inequality _____ has ____ solution.
- ii. The inequality _____ is _____ for all real

numbers for which _____ is defined.

APPLICATION

The inequality $|T-50| \le 22$ describes the range of monthly average temperature T, in degrees Fahrenheit, for Albany, New York. Solve the inequality and interpret the solution.

Section 10.1: RADI CAL EXPRESSIONS AND FUNCTIONS

When you are done with your homework you should be able to...

- π Evaluate square roots
- Evaluate square root functions
- Find the domain of square root functions
- Use models that are square root functions
- Simplify expressions of the form $\sqrt{a^2}$
- Evaluate cube root functions
- Simplify expressions of the form $\sqrt[3]{a^3}$
- Find even and odd roots
- Simplify expressions of the form $\sqrt[n]{a^n}$

WARM-UP:

1. Fill in the blank.

a.
$$5 \cdot _{--} = 5^2$$

b.
$$x^3 \cdot _{--} = x^6$$

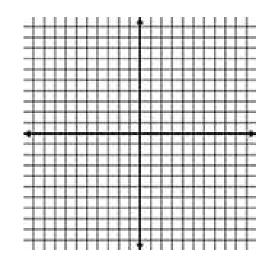
c.
$$(y^2)^{--} = y^{16}$$

2. Solve
$$|x| = 3$$
.

3. Graph
$$f(x) = \sqrt{x}$$

d.
$$(-16)^2 =$$

e.
$$-(16)^2 =$$



DEFINITION OF THE PRINCIPAL SQUARE ROOT

If _____ is a nonnegative real number, the _____ number ____ such that _____, denoted by _____, is the ____ of ____.

Example 1: Evaluate.

a. $\sqrt{169}$

d. $\sqrt{36+64}$

b. $\sqrt{0.04}$

e. $\sqrt{36} + \sqrt{64}$

c. $\sqrt{\frac{49}{64}}$

SQUARE ROOT FUNCTIONS

How is this different than the graph we sketched in the warm-up?

Example 2: Find the indicated function value.

a.
$$f(x) = \sqrt{6x+10}$$
; $f(1)$

b.
$$g(x) = -\sqrt{50-2x}$$
; $f(5)$

Example 3: Find the domain of $f(x) = \sqrt{10x - 7}$

SIMPLIFYING $\sqrt{a^2}$

For any real number a,

In words, the principal square root of _____ is the _____

of _____.

Example 4: Simplify each expression.

a.
$$\sqrt{(-9)^2}$$

c.
$$\sqrt{100x^{10}}$$

b.
$$\sqrt{(x-23)^2}$$

d.
$$\sqrt{x^2 - 14x + 49}$$

DEFINITION OF THE CUBE ROOT OF A NUMBER

The cube root of a real number a is written _____.

_____ means that ______.

CUBE ROOT FUNCTIONS

Unlike square roots, the cube root of a negative number is a					
number. All real numbers have cube roots. Because every					
number,, has precisely one cube root,, there is a cube root					
function defined by					
The domain of this function is We can graph	by				
	J				
selecting real numbers for It is easiest to pick perfect	·				

SIMPLIFYING $\sqrt[3]{a^3}$

For any real number a,

In words, the cube root of any expression ______ is that expression.

Example 5: Find the indicated function value.

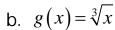
a.
$$f(x) = \sqrt[3]{x-20}$$
; $f(12)$

b.
$$g(x) = \sqrt[3]{2x}$$
; $g(32)$

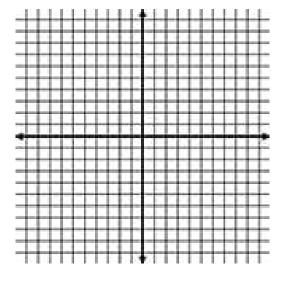
Example 6: Graph the following functions by plotting points.

a.
$$f(x) = \sqrt{x+1}$$

Х	$f\left(x\right) = \sqrt{x+1}$	(x, f(x))	*************************************



Х	$g(x) = \sqrt[3]{x}$	(x,g(x))



SIMPLIFYING $\sqrt[n]{a^n}$

For any real number a,

- 1. If *n* is even, _____.
- 2. If *n* is odd, ______

Example 7: Simplify.

a.
$$\sqrt[6]{x^6}$$

b.
$$\sqrt[5]{(2x-1)^5}$$

c.
$$\sqrt[8]{(-2)^8}$$

APPLICATION

Police use the function $f(x) = \sqrt{20x}$ to estimate the speed of a car, f(x), in miles per hour, based on the length, x, in feet, of its skid marks upon sudden braking on a dry asphalt road. A motorist is involved in an accident. A police officer measures the car's skid marks to be 45 feet long. If the posted speed limit is 35 miles per hour and the motorist tells the officer she was not speeding, should the officer believe her?

Section 10.2: RATIONAL EXPONENTS

When you are done with your homework you should be able to...

- π Use the definition of $a^{rac{1}{n}}$
- π Use the definition of $a^{rac{m}{n}}$
- π Use the definition of $a^{-\frac{m}{n}}$
- π Simplify expressions with rational exponents
- $\boldsymbol{\pi}$ $\,$ Simplify radical expressions using rational exponents

WARM-UP:

1.
$$\frac{1}{2} - \frac{3}{8}$$

2. Simplify
$$\frac{x^2y^5}{(2x^3)^{-3}}$$

THE DEFINITION OF $a^{\frac{1}{n}}$

If ______ represents a real number and _____ is an integer, then

If *n* is even, *a* must be ______. If *n* is odd, *a* can be any real number.

Example 1: Use radical notation to rewrite each expression. Simplify, if possible.

a. $400^{\frac{1}{2}}$

b. $(7xy^2)^{\frac{1}{3}}$

c. $(-32)^{\frac{1}{5}}$

Example 2: Rewrite with rational exponents.

a. $\sqrt[4]{12st}$

b. $\sqrt[3]{\frac{3z^2}{10}}$

c. $\sqrt{5xyz}$

THE DEFINITION OF $a^{\frac{m}{n}}$

If ______ represents a real number, _____ is a positive rational number reduced to lowest terms, and _____ is an integer, then and

Example 3: Use radical notation to rewrite each expression. Simplify, if possible.

a. $16^{\frac{3}{4}}$

b. $(-729)^{\frac{2}{3}}$

c. $(9)^{\frac{5}{2}}$

Example 4: Rewrite with rational exponents.

a. $\sqrt[3]{12^4}$

b. $\sqrt[5]{\left(\frac{x}{y}\right)^4}$

c. $\sqrt{(11t)^3}$

THE DEFINITION OF $a^{-\frac{m}{n}}$

If ______ is a nonzero real number, then

Example 5: Rewrite each expression with a positive exponent. Simplify, if possible.

a.
$$144^{-\frac{1}{2}}$$

b.
$$(-8)^{-\frac{2}{3}}$$

c.
$$(32)^{-\frac{3}{5}}$$

PROPERTIES OF RATIONAL EXPONENTS

If m and n are rational exponents, and a and b are real numbers for which the following expressions are defined, then

1.
$$b^m b^n =$$
______.

3.
$$(b^m)^n =$$
_________.

4.
$$(ab)^n =$$
_______.

5.
$$\left(\frac{a}{b}\right)^n = \underline{\hspace{1cm}}$$

Example 6: Use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers.

a.
$$5^{\frac{2}{3}} \cdot 5^{\frac{1}{3}}$$

b.
$$(125x^9y^6)^{\frac{1}{3}}$$

C.
$$\frac{\left(2y^{\frac{1}{5}}\right)^4}{y^{\frac{3}{10}}}$$

SIMPLIFYING RADICAL EXPRESSIONS USING RATIONAL EXPONENTS

- 1. Rewrite each radical expression as an ______ expression with a ______.
- 2. Simplify using _____ of rational exponents.
- 3. _____ in radical notation if rational exponents still appear.

Example 7: Use rational exponents to simplify. If rational exponents appear after simplifying, write the answer in radical notation. Assume that all variables represent positive numbers.

a.
$$\left(\sqrt[3]{xy}\right)^{21}$$

b.
$$\sqrt{3} \cdot \sqrt[3]{3}$$

c.
$$\frac{\sqrt[4]{a^3b^3}}{\sqrt{ab}}$$

Section 10.3: MULTIPLYING AND SIMPLIFYING RADICAL EXPRESSIONS

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ $\,$ Use the product rule to multiply radicals
- π Use factoring and the product rule to simplify radicals
- π Multiply radicals and then simplify

WARM-UP:

1. Use properties of rational exponents to simplify each expression. Assume that all variables represent positive numbers.

a.
$$\frac{4^{\frac{2}{3}}}{4^{\frac{1}{3}}}$$

b.
$$(196x^{10}y^{22})^{\frac{1}{2}}$$

2. Factor out the greatest common factor.

$$8x^{\frac{1}{4}} + 16x$$

3. Multiply

$$\left(x^{\frac{1}{2}}+3\right)\left(x^{\frac{3}{2}}-10\right)$$

THE PRODUCT RULE FOR RADICALS

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, then

The _____ of two ____ is the ____

root of the _____ of the radicands.

Example 1: Multiply.

a.
$$\sqrt{2} \cdot \sqrt{11}$$

b.
$$\sqrt[3]{4x} \cdot \sqrt[3]{12x}$$

c.
$$\sqrt{x-1} \cdot \sqrt{x+1}$$

SIMPLIFYING RADICAL EXPRESSIONS BY FACTORING

A radical expression whose index is *n* is _____ when its radicand

has no ______ that are perfect _____ powers. To simplify, use the following procedure:

1. Write the radicand as the ______ of two factors, one of which is

the _____ perfect _____ power.

2. Use the _____ rule to take the ____ root of each factor.

3. Find the _____ root of the perfect *n*th power.

Example 2: Simplify by factoring. Assume that all variables represent positive numbers.

a.
$$\sqrt{12}$$

b.
$$\sqrt[3]{81x^5}$$

c.
$$\sqrt{288x^{11}y^{14}z^3}$$

**For the remainder of this chapter, in situations that do not involve functions, we will assume that no radicands involve negative quantities raised to even powers. Based upon this assumption, absolute value bars are not necessary when taking even roots.

SIMPLIFYING WHEN VARIABLES TO EVEN POWERS IN A RADICAND ARE NONNEGATIVE QUANTITIES

For any _____ real number a,

Example 3: Simplify.

a.
$$\sqrt{108x^4y^3}$$

b.
$$\sqrt[5]{64x^8y^{10}z^5}$$

c.
$$\sqrt[4]{32x^{12}y^{15}}$$

Example 4: Multiply and simplify.

a.
$$\sqrt{15xy} \cdot \sqrt{3xy}$$

b.
$$\sqrt[3]{10x^2y} \cdot \sqrt[3]{200x^2y^2}$$

Example 5: Simplify.

a.
$$\sqrt{5xy} \cdot \sqrt{10xy^2}$$

b.
$$\sqrt[5]{8x^4y^3z^3} \cdot \sqrt[5]{8xy^9z^8}$$

c.
$$(2x^2y\sqrt[4]{8xy})(-32xy^2\sqrt[4]{2x^2y^3})$$

Section 10.4: ADDI NG, SUBTRACTI NG, AND DI VI DI NG RADI CAL EXPRESSI ONS

When you are done with your 10.4 homework you should be able to...

- π Add and subtract radical expressions
- π Use the quotient rule to simplify radical expressions
- π Use the quotient rule to divide radical expressions

WARM-UP:

Simplify.

a.
$$\frac{8x^3y^5}{2x^{-2}y^2}$$

b.
$$3xy^2\sqrt[3]{16x^2y^2}$$

THE QUOTIENT RULE FOR RADICALS

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and _____, then

The _____ root of a _____ is the _____ of the

_____ roots of the _____.

Example 1: Simplify using the quotient rule.

a.
$$\sqrt{\frac{20}{9}}$$

b.
$$\sqrt[3]{\frac{x^6}{27y^{12}}}$$

ADDING AND SUBTRACTING LIKE RADICALS

DIVIDING RADICAL EXPRESSIONS

If $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers, and _____, then

To ______ two radical expressions with the SAME _____, divide

the radicands and retain the ______.

Example 2: Divide and, if possible, simplify.

a.
$$\frac{\sqrt{120x^4}}{\sqrt{3x}}$$

b.
$$\frac{\sqrt[3]{128x^4y^2}}{\sqrt[3]{2xy^{-4}}}$$

Example 3: Perform the indicated operations.

a.
$$\sqrt{2} + 5\sqrt{2}$$

c.
$$\frac{\sqrt{27}}{2} + \frac{\sqrt{75}}{7}$$

b.
$$-\sqrt{20x^3} + 3x\sqrt{80x}$$

d.
$$\frac{16x^4\sqrt[3]{48x^3y^2}}{8x^3\sqrt[3]{3x^2y}} - \frac{20\sqrt[3]{2x^3y}}{4\sqrt[3]{x^{-1}}}$$

10.5: MULTIPLYING RADICALS WITH MORE THAN ONE TERM AND RATIONALIZING DENOMINATORS

When you are done with your 10.5 homework you should be able to...

- π Multiply radical expressions with more than one term
- π Use polynomial special products to multiply radicals
- π Rationalize denominators containing one term
- π Rationalize denominators containing two terms
- π Rationalize numerators

WARM-UP:

Multiply.

a.
$$x^{\frac{1}{2}}(x-3)$$

b.
$$(x^2-5)(x^2+5)$$

c.
$$(3x-1)^2$$

MULTIPLYING RADICAL EXPRESSIONS WITH MORE THAN ONE TERM

Radical expressions with more than one term are multiplied in much the same way

as _____ with more than one term are multiplied.

Example 1: Multiply.

a.
$$\sqrt{5}\left(x+\sqrt{10}\right)$$

c.
$$(3\sqrt{3}-4\sqrt{2})(6\sqrt{3}-10\sqrt{2})$$

b.
$$\sqrt[3]{y^2} \left(\sqrt[3]{16} - \sqrt[3]{y} \right)$$

Example 2: Multiply.

a.
$$\left(x - \sqrt{10}\right)\left(x + \sqrt{10}\right)$$

b.
$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})$$

c.
$$(\sqrt{3} + \sqrt{15})^2$$

CONJUGATES

Radical expressions that involve the _____ and ____ of the ____ two terms are called _____.

RATIONALIZING DENOMINATORS CONTAINING ONE TERM occurs when you ______ a radical expression as an ______ expression in which the denominator no longer contains any ______. When the denominator contains a ______ radical with an *n*th root, multiply the ______ and the ______ by a radical of index *n* that produces a perfect ______ power in the denominator's radicand. Example 3: Rationalize each denominator. a. $\frac{2}{\sqrt{3}}$ b. $\sqrt[3]{\frac{13}{2}}$

$$C. \quad \sqrt{\frac{5}{6xy}}$$

d.
$$\frac{4x}{\sqrt[4]{8xy^3}}$$

RATIONALIZING DENOMINATORS CONTAINING TWO TERMS

When the denominator contains two terms with one or more ______

roots, multiply the _____ and the _____

by the _____ of the denominator.

Example 4: Rationalize each denominator.

a.
$$\frac{12}{1-\sqrt{3}}$$

b.
$$\frac{6}{\sqrt{11} + \sqrt{5}}$$

c.
$$\frac{2\sqrt{3} + 7\sqrt{7}}{2\sqrt{3} - 7\sqrt{7}}$$

$$d. \ \frac{\sqrt{x} + 8}{\sqrt{x} + 3}$$

RATIONALIZING NUMERATORS

To rationalize a numerator, multiply by_____ to eliminate the radical in

the _____.

Example 5: Rationalize each numerator.

a.
$$\sqrt{\frac{3}{2}}$$

b.
$$\frac{\sqrt[3]{5x^2}}{4}$$

$$c. \ \frac{\sqrt{x} - \sqrt{2}}{x - 2}$$

Section 10.6: RADI CAL EQUATIONS

When you are done with your homework you should be able to...

- π Solve radical equations
- $\boldsymbol{\pi}$. Use models that are radical functions to solve problems

WARM-UP:

Solve:

$$2x^2 - 3x = 5$$

SOLVING RADICAL EQUATIONS CONTAINING nth ROOTS

1.	If necessary, arrange terms so that radical is on one side of the equation.
2.	Raise sides of the equation to the power to eliminate the
	nth root.
3.	the resulting equation. If this equation still contains radicals,
	steps 1 and 2!
4.	all proposed solutions in the equation.

Example 1: Solve.

a.
$$\sqrt{5x-1} = 8$$

b.
$$\sqrt{2x+5} + 11 = 6$$

c.
$$x = \sqrt{6x + 7}$$

d.
$$\sqrt[3]{4x-3}-5=0$$

e.
$$\sqrt{x+2} + \sqrt{3x+7} = 1$$

f.
$$2\sqrt{x-3} + 4 = x+1$$

g.
$$2(x-1)^{\frac{1}{3}} = (x^2 + 2x)^{\frac{1}{3}}$$

Example 2: If $f(x) = x - \sqrt{x-2}$, find all values of x for which f(x) = 4.

Example 3: Solve
$$r = \sqrt{\frac{A}{4\pi}}$$
 for A .

Example 4: Without graphing, find the x-intercept of the function $f(x) = \sqrt{2x-3} - \sqrt{2x} + 1$.

APPLICATION

A basketball player's hang time is the time spent in the air when shooting a basket. The formula $t=\frac{\sqrt{d}}{2}$ models hang time, t, in seconds, in terms of the vertical distance of a player's jump, d, in feet.

When Michael Wilson of the Harlem Globetrotters slam-dunked a basketball 12 feet, his hang time for the shot was approximately 1.16 seconds. What was the vertical distance of his jump, rounded to the nearest tenth of a foot?

Section 10.7: COMPLEX NUMBERS

When you are done with your homework you should be able to...

- π Express square roots of negative numbers in terms of i
- $\boldsymbol{\pi}$ $\,$ Add and subtract complex numbers
- π Multiply complex numbers
- π Divide complex numbers
- π Simplify powers of *i*

WARM-UP:

Rationalize the denominator:

a.
$$\frac{5}{\sqrt{x}}$$

b.
$$\frac{3-\sqrt{x}}{3+\sqrt{x}}$$

THE IMAGINARY UNIT i

The imaginary unit ____ is defined as

THE SQUARE ROOT OF A NEGATIVE NUMBER

If b is a positive real number, then

Example 1: Write as a multiple of i.

a.
$$\sqrt{-100}$$

b.
$$\sqrt{-50}$$

COMPLEX NUMBERS AND IMAGINARY NUMBERS

The set of all numbers in the form

with real numbers a and b, and i, the imaginary unit, is called the set of

_______. The real number _____ is called the real

part and the real number _____ is called the imaginary part of the complex

number______. If _______, then the complex number is called an

______ number.

Example 2: Express each number in terms of *i* and simplify, if possible.

a.
$$7 + \sqrt{-4}$$

b.
$$-3 - \sqrt{-27}$$

ADDING AND SUBTRACTING COMPLEX NUMBERS

- 1. (a+bi)+(c+di) =2. (a+bi)-(c+di) =

Example 3: Add or subtract as indicated. Write the result in the form a+bi.

a. (6+5i)+(4+3i)

b. (-7+3i)-(9-10i)

MULTIPLYING COMPLEX NUMBERS

Multiplication of complex numbers is performed the same way as multiplication of _____, using the _____ property and

the FOIL method. After completing the multiplication, we replace any occurrences of _____ with ____.

Example 4: Multiply.

- a. (5+8i)(4i-3) b. (2+7i)(2-7i)
- c. $(3+\sqrt{-16})^2$

CONJUGATES AND DIVISION

The of the complex number $a+bi$ is The				
of the complex number $a\!-\!bi$ is Conjugates				
are used to complex numbers. The goal of the division procedure				
is to obtain a real number in the This real number				
becomes the denominator of and in By				
multiplying the numerator and denominator of the quotient by the				
of the denominator, you will obtain this real number in				
the denominator.				

Example 5: Divide and simplify to the form a+bi.

a.
$$\frac{9}{-8i}$$

$$d. \frac{6-3i}{4+2i}$$

b.
$$\frac{3}{4+i}$$

c.
$$\frac{5i}{2-3i}$$

e.
$$\frac{1-i}{1+i}$$

SIMPLIFYING POWERS OF i

- 1. Express the given power of *i* in terms of _____.
- 2. Replace _____ with ____ and simplify.

Example 6: Simplify.

a. i^{14}

b. i^{15}

c. i^{46}

d. $\left(-i\right)^{6}$

Section 11.1: THE SQUARE ROOT PROPERTY AND COMPLETING THE SQUARE; DISTANCE AND MIDPOINT FORMULAS

When you are done with your homework you should be able to...

- π Solve quadratic equations using the square root property
- π Complete the square of a binomial
- π Solve quadratic equations by completing the square
- π Solve problems using the square root property
- π Find the distance between two points
- π Find the midpoint of a line segment

WARM-UP:

Solve.

a.
$$(x-1)^2 = 4$$

b.
$$(x-5)^2 = 0$$

THE SQUARE ROOT PROPERTY

If u is an algebraic expression and d is a nonzero real number, then					
if	, then	or	·		
Equivalently,					
if	, then				

Example 1: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a+bi.

a.
$$x^2 = 9$$

d.
$$x^2 - 10x + 25 = 1$$

b.
$$2x^2 - 10 = 0$$

e.
$$3(x+2)^2 = 36$$

c.
$$4x^2 + 49 = 0$$

COMPLETING THE SQUARE

If $x^2 + bx$ is a binomial, then by adding $\left(\frac{b}{2}\right)^2$, which is the square of _____ the ____ of ____, a perfect square trinomial will result.

$$x^2 + bx$$
 =

Example 2: Find $\left(\frac{b}{2}\right)^2$ for each expression.

- a. $x^2 + 2x$
- b. $x^2 12x$

c. $x^2 + 5x$

SOLVING QUADRATIC EQUATIONS BY COMPLETING THE SQUARE

Consider a quadratic equation in the form $ax^2 + bx + c$.

- 1. If $a \neq 1$, divide both sides of the equation by _____.
- 2. I solate $x^2 + bx$.
- 3. Add _____ to BOTH sides of the equation.
- 4. Factor and simplify.
- 5. Apply the square root property.
- 6. Solve.
- 7. Check your solution(s) in the _____ equation.

Example 3: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a+bi.

a.
$$x^2 + 8x - 2 = 0$$

b.
$$x^2 - 3x - 5 = 0$$

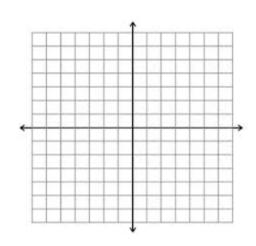
c.
$$3x^2 - 6x = -2$$

d.
$$4x^2 - 2x + 5 = 0$$

Suppose that an amount of money,,	, is invested at interest rate,	_,
compounded annually. In years, the	e amount,, or balance, in the	account
is given by the formula		
Example 4: You invested \$4000 in an accommodally. After 2 years, the amount, or be annual interest rate. Round to the nearest	palance, in the account is \$4300. Fi	
THE PYTHAGOREAN THEOREM		
The sum of the squares of the	of the	of a

A FORMULA FOR COMPOUND INTEREST

Example 5: The doorway into a room is 4 feet wide and 8 feet high. What is the diameter of the largest circular tabletop that can be taken through this doorway diagonally?



THE DISTANCE FORMULA

The distance,,	between the points	_ and	in the
rectangular coordina	ate system is		

Example 6: Find the distance between each pair of points.

a.
$$(5,1)$$
 and $(8,-2)$

b.
$$(2\sqrt{3}, \sqrt{6})$$
 and $(-\sqrt{3}, 5\sqrt{6})$

THE MIDPOINT FORMULA

Consider a line segment whose endpoints are _____ and _____.

The coordinates of the segment's midpoints are

Example 7: Find the midpoint of the line segment with the given endpoints.

a.
$$(10,4)$$
 and $(2,6)$

b.
$$\left(-\frac{2}{5}, \frac{7}{15}\right)$$
 and $\left(-\frac{2}{5}, -\frac{4}{15}\right)$

Section 11.2: THE QUADRATIC FORMULA

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Solve quadratic equations using the quadratic formula
- π Use the discriminant to determine the number and type of solutions
- $\boldsymbol{\pi}$ Determine the most efficient method to use when solving a quadratic equation
- π Write quadratic equations from solutions
- π Use the quadratic formula to solve problems

WARM-UP:

Solve for *x* by completing the square and applying the square root property.

$$ax^2 + bx + c = 0$$

THE QUADRATIC FORMULA

The solutions of a quadratic equation in standard form $ax^2+bx+c=0$, with $a\neq 0$, are given by the **quadratic formula**:

STEPS FOR USING THE QUADRATIC FORMULA

- 1. Write the quadratic equation in ______ form (______).
- 2. Determine the numerical values for _____, ____, and _____.
- 3. Substitute the values of _____, ____, and _____ into the quadratic

formula and _____ the expression.

4. Check your solution(s) in the _____ equation.

Example 1: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a+bi.

a.
$$4x^2 + 3x = 2$$

b.
$$3x^2 = 4x - 6$$

c.
$$2x(x+4) = 3x-3$$

d.
$$x^2 + 5x - 10 = 0$$

THE DISCRIMINANT

The quantity _____, which appears under the _____

sign in the ______ formula, is called the _____. The

discriminant determines the _____ and ____ of solutions of

quadratic equations.

DISCRIMINANT

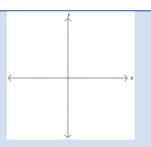
$$b^2-4ac$$

KINDS OF SOLUTIONS GRAPH OF

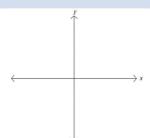
TO
$$ax^2 + bx + c = 0$$
 $y = ax^2 + bx + c$

$$y = ax^2 + bx + c$$

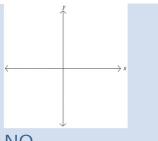
$$b^2 - 4ac > 0$$



$$b^2 - 4ac = 0$$



$$b^2 - 4ac < 0$$



NO

Example 2: Compute the discriminant. Then determine the number and type of solutions.

a.
$$2x^2 - 4x + 3 = 0$$

b.
$$4x^2 = 20x - 25$$

c.
$$x^2 + 2x - 3 = 0$$

DESCRIPTION AND FORM OF THE QUADRATIC EQUATION

MOST EFFICIENT SOLUTION METHOD

$$ax^2 + bx + c = 0$$
, and $ax^2 + bx + c$ can be easily factored.

$$ax^2 + c = 0$$

The quadratic equation has no _____

I solate _____ and use the

term (_____).

property.

 $u^2 = d$; u is a first-degree polynomial.

Use the _____ property.

 $ax^2 + bx + c = 0$, and $ax^2 + bx + c$ cannot factored or the factoring is too difficult.

Use the ______formula.

THE ZERO-PRODUCT PRINCIPLE IN REVERSE

If _____ or _____, then ______.

Example 3: Write a quadratic equation with the given solution set.

a. $\{-2, 6\}$

b. $\{-\sqrt{3}, \sqrt{3}\}$

c. $\{2+i, 2-i\}$

Example 4: The hypotenuse of a right triangle is 6 feet long. One leg is 2 feet shorter than the other. Find the lengths of the legs.

Section 11.3: QUADRATIC FUNCTIONS AND THEIR GRAPHS

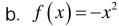
When you are done with your homework you should be able to...

- π Recognize characteristics of parabolas
- π Graph parabolas in the form $f(x) = a(x-h)^2 + k$
- π Graph parabolas in the form $f(x) = ax^2 + bx + c$
- π Determine a quadratic function's minimum or maximum value
- π Solve problems involving a quadratic function's minimum or maximum value

WARM-UP: Graph the following functions by plotting points.

a.
$$f(x) = x^2$$

	a. $J(x) = x$		
Х	$f(x) = x^2$	(x, f(x))	
			-
			+++++++++++++++++++++++++++++++++++++++



	J. 7 ()		
X	$f(x) = -x^2$	(x, f(x))	

QUADRATIC FUNCTIONS IN THE FORM $f(x) = a(x-h)^2 + k$

The graph of

is a ______ whose _____ is the point _____.

The parabola is _____ with respect to the line _____. If

_____, the parabola opens upwards; if _____, the parabola opens
_____.

$$f(x) = a(x-h)^2 + k$$

GRAPHING QUADRATIC FUNCTIONS WITH EQUATIONS IN THE FORM

 $f(x) = a(x-h)^2 + k$

1. Determine whether the _____ opens ____ or

______. If _____ the parabola opens upward and if

______ the parabola opens ______.

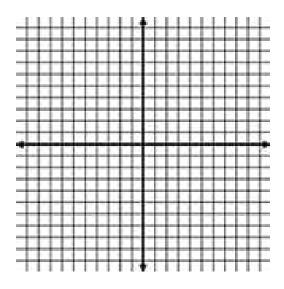
- 2. Determine the _____ of the parabola. The vertex is _____.
- 3. Find any ______ by solving _____.
- 4. Find the _____ by computing ____.
- 5. Plot the _____, the _____, and additional points as

necessary. Connect these points with a _____ curve that is

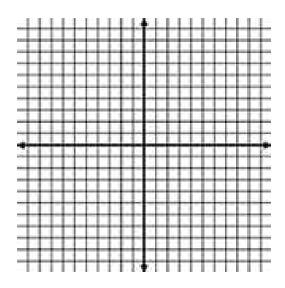
shaped like a _____ or an inverted bowl.

Example 1: Use the vertex and intercepts to sketch the graph of each quadratic function. Use the graph to identify the function's range.

a.
$$f(x) = (x-1)^2 - 2$$



b.
$$f(x) = 2(x+2)^2 - 1$$



THE VERTEX OF A PARABOLA WHOSE EQUATION IS $f(x) = ax^2 + bx + c$

The parabola's vertex is ______ is _____ and the _____ is found by substituting the _____ into the parabola's equation and _____ the function at this value of _____.

Example 2: Find the coordinates of the vertex for the parabola defined by the given quadratic function.

a.
$$f(x) = 3x^2 - 12x + 1$$

b.
$$f(x) = -2x^2 + 7x - 4$$

a.
$$f(x) = 3x^2 - 12x + 1$$
 b. $f(x) = -2x^2 + 7x - 4$ c. $f(x) = -3(x - 2)^2 + 12$

GRAPHING QUADRATIC FUNCTIONS WITH EQUATIONS IN THE FORM

 $f(x) = ax^2 + bx + c$

1. Determine whether the _____ opens ____ or

______. If _____ the parabola opens upward and if

______ the parabola opens ______.

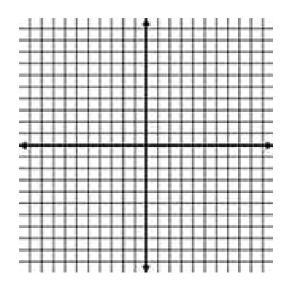
- 2. Determine the _____ of the parabola. The vertex is _____.
- 3. Find any ______ by solving _____.
- 4. Find the _____ by computing ____.
- 5. Plot the _____, the _____, and additional points as

necessary. Connect these points with a _____ curve that is

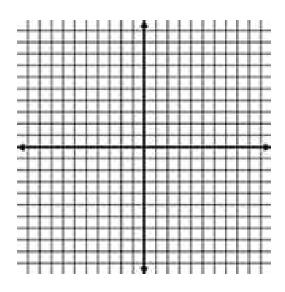
shaped like a _____ or an inverted bowl.

Example 3: Use the vertex and intercepts to sketch the graph of each quadratic function. Use the graph to identify the function's range.

a.
$$f(x) = x^2 - 2x - 15$$



b. $f(x) = 5 - 4x - x^2$



MINIMUM AND MAXIMUM: QUADRATIC FUNCTIONS

Consider the quadratic function $f(x) = ax^2 + bx + c$.

1. If _____, then ____ has a _____ that occurs at ____.

This _____ is _____.

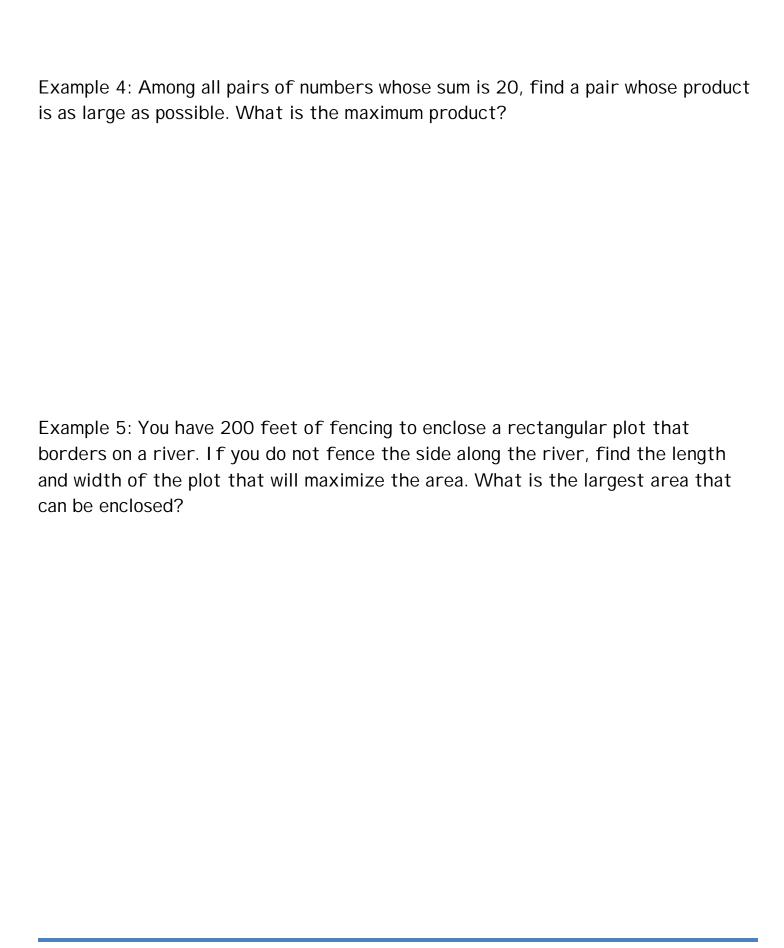
2. If _____, then ____ has a _____ that occurs at ____.

This _____ is _____.

In each case, the value of _____ gives the _____ of the minimum

or maximum value. The value of _____, or _____, gives that minimum or

maximum value.



Section 11.4: EQUATIONS QUADRATIC IN FORM

When you are done with your homework you should be able to...

 $\boldsymbol{\pi}$. Solve equations that are quadratic in form

WARM-UP: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a+bi.

a.
$$-5x^2 + x = 3$$

b.
$$x^2 = x - 6$$

EQUATIONS WHICH ARE QUADRATIC IN FORM

An equation that is	in	is one that o	can be
expressed as a quadratic equation using	j an appropriat	e	·
In an equation that is quadratic in form	ı, the	fac	tor in one
term is the of the	e variable fact	or in the other vari	able
term. The third term is a	By I	etting equal t	:he
variable factor that reappears squared,	, a quadratic ed	quation in will	result.
Solve this quadratic equation for	using the meth	nods you learned ea	rlier.
Then use your substitution to find the v	values for the		_ in the
equation.			
Example 1: Solve If possible simplify r	adicals or ratio	onalize denominator	~s

Example 1: Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a + bi.

a.
$$x^4 - 13x^2 + 36 = 0$$

b.
$$x^4 + 4x^2 = 5$$

c.
$$x + \sqrt{x} - 6 = 0$$

d.
$$(x+3)^2 + 7(x+3) - 18 = 0$$

e.
$$x^{-2} - 6x^{-1} = -4$$

Section 12.1: EXPONENTIAL FUNCTIONS

When you are done with your homework you should be able to...

- π Evaluate exponential functions
- π Graph exponential functions
- π Evaluate functions with base e
- π Use compound interest formulas

WARM-UP:

Solve. If possible, simplify radicals or rationalize denominators. Express imaginary solutions in the form a+bi.

$$(x^2-2)^2-(x^2-2)=6$$

DEFINITION OF AN EXPONENTIAL FUNCTION

The exponential function with base is defined by
where is a constant other than (and) and
is any real number.

Example 1: Determine if the given function is an exponential function.

a.
$$f(x) = 3^x$$

b.
$$g(x) = (-4)^{x+1}$$

Example 2: Evaluate the exponential function at x = -2, 0, and 2.

a.
$$f(x) = 2^x$$

b.
$$g(x) = \left(\frac{1}{3}\right)^x$$

Example 3: Sketch the graph of each exponential function.

a.
$$f(x) = 3^x$$

	<u>u. </u>		
Х	$f(x) = 3^x$	(x, f(x))	1
			

b.
$$g(x) = 3^{-x}$$

	$D. \ \ g(x) - g$		_
Х	$g(x) = 3^{-x}$	(x,g(x))	1

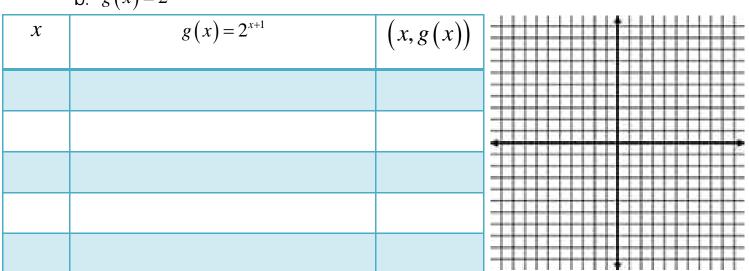
How are these two graphs related?

Example 4: Sketch the graph of each exponential function.

a.
$$f(x) = 2^x$$

	u. , ,		
Х	$f(x) = 2^x$	(x, f(x))	
			

b.
$$g(x) = 2^{x+1}$$



How are these two graphs related?

CHARACTERISTICS OF EXPONENTIAL FUNCTIONS OF THE FORM

 $f(x) = b^x$

1. The domain of $f(x) = b^x$ consists of all real numbers: _____. The range

of $f(x) = b^x$ consists of all _____ real numbers: _____.

2. The graphs of all exponential functions of the form $f(x) = b^x$ pass through

the point _____ because ____ (____). The ____ is ___.

3. If ______ to the ____ and

is an ______ function. The greater the value of _____, the steeper

the _____.

4. If ______ to the _____ and

is a _____ function. The smaller the value of ____, the steeper

the _____.

5. The graph of $f(x) = b^x$ approaches, but does not touch, the ______.

The line _____ is a _____ asymptote.

1	1
•	1

$$\left(1+\frac{1}{n}\right)^n$$

100000000

1

2

5

10

100

1000

10000

100000

1000000

The irrational number _____,

approximately _____, is called

the _____ base. The function

_____ is called the

_____ exponential

function.

FORMULAS FOR COMPOUND INTEREST

After _____ years, the balance ____, in an account with principal ____ and

annual interest rate ____ (in decimal form) is given by the following formulas:

- 1. For ____ compounding interest periods per year:
- 2. For continuous compounding:

	5: Find the accumulated value of an investment of \$5000 for 10 years at strate of 6.5% if the money is
a.	compounded semiannually:
b	. compounded monthly:
C.	compounded continuously:

Section 12.2: LOGARI THMI C FUNCTIONS

When you are done with your homework you should be able to...

- π Change from logarithmic to exponential form
- π Change from exponential to logarithmic form
- π Evaluate logarithms
- π Use basic logarithm properties
- π Graph logarithmic functions
- π Find the domain of a logarithmic function
- π Use common logarithms
- π Use natural logarithms

WARM-UP:

Graph $y = 2^x$.

X	$y = 2^x$	(x, y)	

DEFINITION OF THE LOGARITHMIC FUNCTION

For _____, ____,

______ is equivalent to _____.

The function _____ is the logarithmic function with base ____.

Example 1: Write each equation in its equivalent exponential form:

a.
$$\log_4 x = 2$$

b.
$$y = \log_3 81$$

Example 2: Write each equation in its equivalent logarithmic form:

a.
$$e^{y} = 9$$

b.
$$b^4 = 16$$

Example 3: Evaluate.

a.
$$\log_5 25$$

$$b.\ log_{81}9$$

BASIC LOGARITHMIC PROPERTIES INVOLVING 1

1. $\log_b b =$ _____ "the power to which I raise _____ to get ____ is ____"

2. $\log_b 1 =$ _____ "the power to which I raise _____ to get ____ is ____"

INVERSE PROPERTIES OF LOGARITHMS

For _____ and _____,

1.
$$\log_b b^x =$$

2.
$$b^{\log_b x} =$$

Example 4: Evaluate.

a. $\log_6 6$

c. $\log_9 1$

b. $\log_{12} 12^4$

d. $7^{\log_7 24}$

Example 5: Sketch the graph of each logarithmic function.

$$f(x) = \log_3 x$$

X	$f(x) = \log_3 x$	(x, f(x))	*************************************
			

CHARACTERISTICS OF LOGARITHMIC FUNCTIONS OF THE FORM

 $f(x) = \log_b x$

1. The domain of $f(x) = \log_b x$ consists of all positive real numbers: ______.

The range of $f(x) = \log_b x$ consists of all real numbers: _____.

2. The graphs of all logarithmic functions of the form $f(x) = \log_b x$ pass

through the point ______ because _____ . The

______ is ____. There is no _____.

3. If ______, $f(x) = \log_b x$ has a graph that goes _____ to the _____

and is an _____ function.

4. If ______ to the _____ to the _____

and is a _____ function.

5. The graph of $f(x) = \log_b x$ approaches, but does not touch, the

_____. The line _____ is a _____ asymptote.

Example 6: Find the domain.

a.
$$f(x) = \log_2(x-4)$$

b.
$$f(x) = \log_5(1-x)$$

COMMON LOGARITHMS

The logarithmic function with base _____ is called the common logarithmic

function. The function ______ is usually expressed as

_____. A calculator with a LOG key can be used to evaluate

common logarithms.

Example 7: Evaluate.

a. log1000

b. log 0.01

PROPERTIES OF COMMON LOGARITHMS

3.
$$\log 10^x =$$

4.
$$10^{\log x} =$$

Example 8: Evaluate.

a. $log 10^3$

b. $10^{\log 7}$

NATURAL LOGARITHMS

The logarithmic function with base _____ is called the **natural logarithmic**

function. The function _____ is usually expressed as

_____. A calculator with aLN key can be used to evaluate

common logarithms.

PROPERTIES OF NATURAL LOGARITHMS

1. ln1 = ____

3. $\ln e^x =$ _____

2. ln *e* = _____

4. $e^{\ln x} =$ _____

Example 9: Evaluate.

a.
$$\ln \frac{1}{e^6}$$

b.
$$e^{\ln 300}$$

Example 10: Find the domain of $f(x) = \ln(x-4)^2$.

Section 12.3: PROPERTIES OF LOGARITHMS

When you are done with your 12.3 homework you should be able to...

- π Use the product rule
- π Use the quotient rule
- π Use the power rule
- π Expand logarithmic expressions
- π Condense logarithmic expressions
- π Use the change-of-base property

WARM-UP:

Simplify.

a.
$$5^x \cdot 5^x$$

b.
$$\frac{2^{3x}}{2^x}$$

THE PRODUCT RULE

Let ____, and ____ be positive real numbers with _____.

The logarithm of a product is the _____ of the _____.

Example 1: Expand each logarithmic expression.

a.
$$\log_6(6x)$$

b.
$$\ln(x \cdot x)$$

THE QUOTIENT RULE

Let ____, and ____ be positive real numbers with _____.

The logarithm of a quotient is the _____ of the _____.

Example 2: Expand each logarithmic expression.

a. $\log \frac{1}{x}$

b. $\log_4 \frac{x}{2}$

THE POWER RULE

Let ____ and ____ be positive real numbers with _____, and let ____ be any real number.

The logarithm of a number with an _____ is the ____ of the exponent and the ____ of that number.

Example 3: Expand each logarithmic expression.

a. $\log x^2$

b. $\log_5 \sqrt{x}$

PROPERTIES FOR EXPANDING LOGARITHMIC EXPRESSIONS

For_____ and _____:

- 1. $\underline{\hspace{1cm}} = \log_b M + \log_b N$
- 2. $\underline{\hspace{1cm}} = \log_b M \log_b N$
- 3. $\underline{\hspace{1cm}} = p \log_b M$

Example 4: Expand each logarithmic expression.

a.
$$\log x^3 \sqrt[3]{y}$$

b.
$$\log_4 \sqrt{\frac{x}{12y^5}}$$

PROPERTIES FOR CONDENSING LOGARITHMIC EXPRESSIONS

For_____ and _____:

- 1. $\underline{\hspace{1cm}} = \log_b(MN)$
- $2. \underline{\hspace{1cm}} = \log_b \frac{M}{N}$
- 3. $\underline{\hspace{1cm}} = \log_b M^p$

Example 5: Write as a single logarithm.

a.
$$3 \ln x - \frac{1}{4} \ln (x - 2)$$

b.
$$\log_4 5 + 12\log_4 (x+y)$$

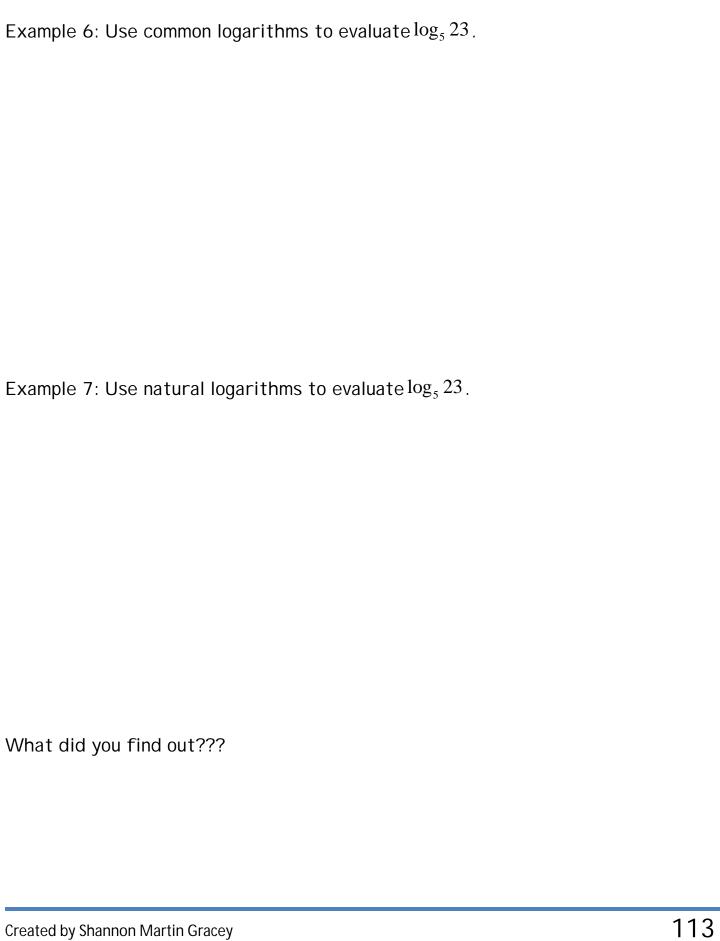
THE CHANGE-OF-BASE PROPERTY

For any logarithmic bases ____ and ____, and any positive number ____,

The logarithm of ____ with base ___ is equal to the logarithm of ___ with any

new base divided by the logarithm of ____ with that new base.

Why would we use this property?



Section 12.4: EXPONENTIAL AND LOGARITHMIC EQUATIONS

When you are done with your 12.4 homework you should be able to...

- π Use like bases to solve exponential equations
- π Use logarithms to solve exponential equations
- π Use exponential form to solve logarithmic equations
- π Use the one-to-one property of logarithms to solve logarithmic equations
- π Solve applied problems involving exponential and logarithmic equations

WARM-UP:

Solve.

$$\frac{x-1}{5} = \frac{2}{5}$$

SOLVING EXPONENTIAL EQUATIONS BY EXPRESSING EACH SIDE AS A POWER OF THE SAME BASE

If ______, then ______.

- 1. Rewrite the equation in the form ______.
- 2. Set _____.
- 3. Solve for the variable.

Example 1: Solve.

a.
$$10^{x^2-1} = 100$$

b.
$$4^{x+1} = 8^{3x}$$

USING LOGARITHMS TO SOLVE EXPONENTIAL EQUATIONS

- 1. I solate the _____ expression.
- 2. Take the ______ logarithm on both sides for base _____. Take the _____ logarithm on both sides for bases other than 10.
- 3. Simplify using one of the following properties:
- 4. Solve for the variable.

Example 2: Solve.

a.
$$e^{2x} - 6 = 32$$

b.
$$\frac{3^{x-1}}{2} = 5$$

c.
$$10^x = 120$$

USING EXPONENTIAL FORM TO SOLVE LOGARITHMIC EQUATIONS

- 1. Express the equation in the form ______.
- 2. Use the definition of a logarithm to rewrite the equation in exponential form:
- 3. Solve for the variable.
- 4. Check proposed solutions in the ______ equation. Include in the solution set only values for which _____.

Example 3: Solve.

a.
$$\log_3 x - \log_3 (x-2) = 4$$

b.
$$\log x + \log(x + 21) = 2$$

USING THE ONE-TO-ONE PROPERTY OF LOGARITHMS TO SOLVE LOGARITHMIC EQUATIONS

Express the equation in the form _______. This form involves a ______ logarithm whose coefficient is _____ on each side of the equation.
 Use the one-to-one property to rewrite the equation without logarithms:
 Solve for the variable.

4. Check proposed solutions in the _____ equation. Include in the

solution set only values for which _____ and _____.

Example 4: Solve.

a.
$$2\log_6 x - \log_6 64 = 0$$

b.
$$\log(5x+1) = \log(2x+3) + \log 2$$

Section 12.5: EXPONENTI AL GROWTH AND DECAY; MODELI NG DATA

When you are done with your 12.5 homework you should be able to...

 $\boldsymbol{\pi}$ $\,$ Model exponential growth and decay

WARM-UP: Solve. Express the solution set in terms of logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

a.
$$1250e^{0.065x} = 6250$$

b.
$$4e^{7x} = 10273$$

One of algebra's many applications is to	the behavior of
variables. This can be done with exponential	and
models. With exponential gro	owth or decay, quantities grow or
decay ate a rate directly	to their size.

EXPONENTIAL GROWTH AND DECAY MODELS

The mathematical model for exponential growth or decay is given by			
•	If, the function models the amount, or size, of a		
	entity is the amount, or		
	size, of the growing entity at time, is the amount		
	at time, and is a constant representing the rate.		
•	If, the function models the amount, or size, of a		
	entity is the amount, or		
	size, of the decaying entity at time, is the amount		
	at time, and is a constant representing the rate.		

Example 1: In 2000, the population of the Palestinians in the West Bank, Gaza Strip, and East Jerusalem was approximately 3.2 million, and by 2050 it is projected to grow to 12 million.

a. Use the exponential growth model $A=A_0e^{kt}$, in which t is the number of years after 2000, to find an exponential growth function that models the data.

b. In which year will the Palestinian population be 9 million?

Example 2: A bird species in danger of extinction has a population that is decreasing exponentially ($A = A_0 e^{kt}$). Five years ago the population was at 1400 and today only 1000 of the birds are alive. Once the population drops below 100, the situation will be irreversible. When will this happen?

Example 3: Use the exponential growth model, $A=A_0e^{kt}$, to show that the time it takes for a population to triple is given by $t=\frac{\ln 3}{k}$.

Example 4: The August 1978 issue of *National Geographic* described the 1964 find of bones of a newly discovered dinosaur weighing 170 pounds, measuring 9 feet, with a 6 inch claw on one toe of each hind foot. The age of the dinosaur was estimated using potassium-40 dating of rocks surrounding the bones.

a. Potassium-40 decays exponentially with a half-life of approximately 1.31 billion years. Use the fact that after 1.31 billion years a given amount of Potassium-40 will have decayed to half the original amount to show that the decay model for Potassium-40 is given by $A = A_0 e^{-0.52912t}$, where t is in billions of years.

b. Analysis of the rocks surrounding the dinosaur bones indicated that 94.5% of the original amount of Potassium-40 was still present. Let $A=0.945A_0$ in the model in part (a) and estimate the age of the bones of the dinosaur.

EXPRESSING AN EXPONENTIAL MODEL IN BASE e ______ is equivalent to ______

Example 5: Rewrite the equation in terms of base *e.* Express the answer in terms of a natural logarithm and then round to three decimal places.

a.
$$y = 1000(7.3)^x$$
 b. $y = 4.5(0.6)^x$

Section 13.1: THE CIRCLE

When you are done with your 13.1 homework you should be able to...

- $\boldsymbol{\pi}$ $\,$ Write the standard form of a circle's equation
- π Give the center and radius of a circle whose equation is in standard form
- $\boldsymbol{\pi}$ Convert the general form of a circle's equation to standard form

Warm-up:

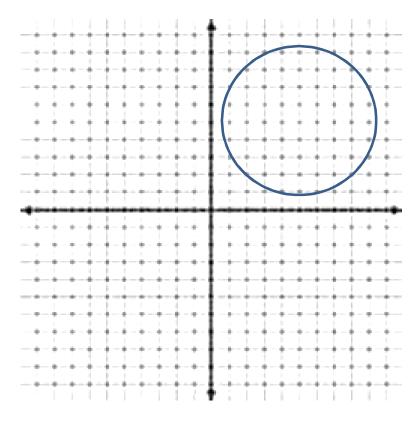
1. Solve by completing the square.

$$2x^2 - 6x + 2 = 3$$

2. Identify the vertex of the quadratic function $f(x) = -(x+4)^2 + 1$

DEFINITION OF A CIRCLE

A circle is the _____ of all points in a plane that are _____ The fixed distance from a _____ point, called the _____ to any point on the _____ is called the _____.



THE STANDARD FORM OF THE EQUATION OF A CIRCLE

The standard form of the equation of a circle with center _____ and radius _____ is

Example 1: Write the standard form of the equation of the circle with the given center and radius.

- a. Center: (0,0), r=8 b. Center: (1,-6),
 - b. Center: (1,-6), $r = \sqrt{2}$

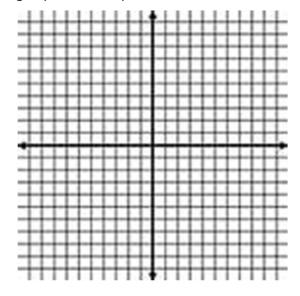
Center:
$$\left(-\frac{1}{2},0\right)$$
, $r=10$

THE GENERAL FORM OF THE EQUATION OF A CIRCLE

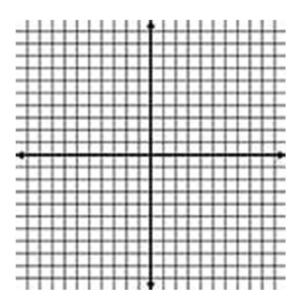
The general form of the equation of a circle with center _____ and radius _____ is

Example 2: Write the equation of the circle in standard form, if necessary. Then give the center and radius of each circle and graph the equation.

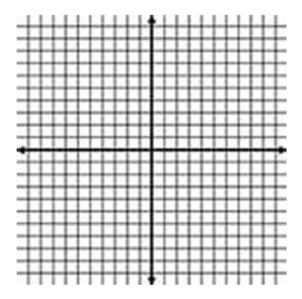
a.
$$x^2 + (y-1)^2 = 16$$



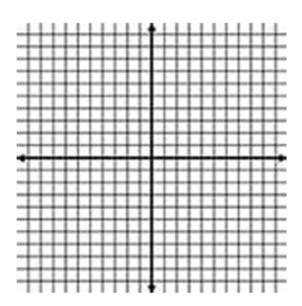
b.
$$x^2 + y^2 + 8x + 4y + 16 = 0$$



c.
$$x^2 + y^2 - 6x - 7 = 0$$



d.
$$x^2 + y^2 - 49 = 0$$



Section 13.5: SYSTEMS OF NONLINEAR EQUATIONS IN TWO VARIABLES

When you are done with your 13.5 homework you should be able to...

- $\boldsymbol{\pi}$ Recognize systems of nonlinear equations in two variables
- π Solve systems of nonlinear equations by substitution
- π Solve systems of nonlinear equations by addition
- π Solve problems using systems of nonlinear equations

WARM-UP:

1. Solve the system by the substitution method.

$$\begin{cases} x + y = 6 \\ 4x - y = 4 \end{cases}$$

2. Solve the system by the addition method.

$$\begin{cases} 2x - 4y = 3 \\ x = 2y + 4 \end{cases}$$

Α	of two	equations in two variables,
also calle	ed asyste	m, contains at least one equation
that cann	not be expressed in the form	A
	of a nonlinear system	in two variables is an ordered pair
of real nu	umbers that satisfies all equations in	the The
solution _	of the system is the se	t of all such ordered pairs. As with
linear systems in two variables, the solution of a nonlinear system (if there is one)		
correspo	nds to the	point(s) of the
of the eq	quations in the system.	
Example	1: Solve each system by the substitu	tion method.
a.		
$\begin{cases} x - y = 0 \\ y = x^2 + 1 \end{cases}$	–1 -1	

b.

$$\begin{cases} y = x^2 + 4x + 5 \\ y = x^2 + 2x - 1 \end{cases}$$

C.

$$\begin{cases} xy = -12\\ x - 2y + 14 = 0 \end{cases}$$

Example 2: Solve each system by the addition method.

a.

$$\begin{cases} 4x^2 - y^2 = 4 \\ 4x^2 + y^2 = 4 \end{cases}$$

b.

$$\begin{cases} x^2 - 2y = 8\\ x^2 + y^2 = 16 \end{cases}$$

C.

$$\begin{cases} x^2 + y^2 = 4 \\ x^2 + (y - 3)^2 = 9 \end{cases}$$

Example 3: The difference between the squares of two numbers is 5. Twice the square of the second number subtracted from three times the square of the first number is 19. Find the numbers.

